3.150 \(\int x^3 (a^2+2 a b x+b^2 x^2)^{3/2} \, dx\)

Optimal. Leaf size=151 \[ \frac{b^3 x^7 \sqrt{a^2+2 a b x+b^2 x^2}}{7 (a+b x)}+\frac{a b^2 x^6 \sqrt{a^2+2 a b x+b^2 x^2}}{2 (a+b x)}+\frac{3 a^2 b x^5 \sqrt{a^2+2 a b x+b^2 x^2}}{5 (a+b x)}+\frac{a^3 x^4 \sqrt{a^2+2 a b x+b^2 x^2}}{4 (a+b x)} \]

[Out]

(a^3*x^4*Sqrt[a^2 + 2*a*b*x + b^2*x^2])/(4*(a + b*x)) + (3*a^2*b*x^5*Sqrt[a^2 + 2*a*b*x + b^2*x^2])/(5*(a + b*
x)) + (a*b^2*x^6*Sqrt[a^2 + 2*a*b*x + b^2*x^2])/(2*(a + b*x)) + (b^3*x^7*Sqrt[a^2 + 2*a*b*x + b^2*x^2])/(7*(a
+ b*x))

________________________________________________________________________________________

Rubi [A]  time = 0.0413578, antiderivative size = 151, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 2, integrand size = 24, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.083, Rules used = {646, 43} \[ \frac{b^3 x^7 \sqrt{a^2+2 a b x+b^2 x^2}}{7 (a+b x)}+\frac{a b^2 x^6 \sqrt{a^2+2 a b x+b^2 x^2}}{2 (a+b x)}+\frac{3 a^2 b x^5 \sqrt{a^2+2 a b x+b^2 x^2}}{5 (a+b x)}+\frac{a^3 x^4 \sqrt{a^2+2 a b x+b^2 x^2}}{4 (a+b x)} \]

Antiderivative was successfully verified.

[In]

Int[x^3*(a^2 + 2*a*b*x + b^2*x^2)^(3/2),x]

[Out]

(a^3*x^4*Sqrt[a^2 + 2*a*b*x + b^2*x^2])/(4*(a + b*x)) + (3*a^2*b*x^5*Sqrt[a^2 + 2*a*b*x + b^2*x^2])/(5*(a + b*
x)) + (a*b^2*x^6*Sqrt[a^2 + 2*a*b*x + b^2*x^2])/(2*(a + b*x)) + (b^3*x^7*Sqrt[a^2 + 2*a*b*x + b^2*x^2])/(7*(a
+ b*x))

Rule 646

Int[((d_.) + (e_.)*(x_))^(m_)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dist[(a + b*x + c*x^2)^Fra
cPart[p]/(c^IntPart[p]*(b/2 + c*x)^(2*FracPart[p])), Int[(d + e*x)^m*(b/2 + c*x)^(2*p), x], x] /; FreeQ[{a, b,
 c, d, e, m, p}, x] && EqQ[b^2 - 4*a*c, 0] &&  !IntegerQ[p] && NeQ[2*c*d - b*e, 0]

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rubi steps

\begin{align*} \int x^3 \left (a^2+2 a b x+b^2 x^2\right )^{3/2} \, dx &=\frac{\sqrt{a^2+2 a b x+b^2 x^2} \int x^3 \left (a b+b^2 x\right )^3 \, dx}{b^2 \left (a b+b^2 x\right )}\\ &=\frac{\sqrt{a^2+2 a b x+b^2 x^2} \int \left (a^3 b^3 x^3+3 a^2 b^4 x^4+3 a b^5 x^5+b^6 x^6\right ) \, dx}{b^2 \left (a b+b^2 x\right )}\\ &=\frac{a^3 x^4 \sqrt{a^2+2 a b x+b^2 x^2}}{4 (a+b x)}+\frac{3 a^2 b x^5 \sqrt{a^2+2 a b x+b^2 x^2}}{5 (a+b x)}+\frac{a b^2 x^6 \sqrt{a^2+2 a b x+b^2 x^2}}{2 (a+b x)}+\frac{b^3 x^7 \sqrt{a^2+2 a b x+b^2 x^2}}{7 (a+b x)}\\ \end{align*}

Mathematica [A]  time = 0.013957, size = 55, normalized size = 0.36 \[ \frac{x^4 \sqrt{(a+b x)^2} \left (84 a^2 b x+35 a^3+70 a b^2 x^2+20 b^3 x^3\right )}{140 (a+b x)} \]

Antiderivative was successfully verified.

[In]

Integrate[x^3*(a^2 + 2*a*b*x + b^2*x^2)^(3/2),x]

[Out]

(x^4*Sqrt[(a + b*x)^2]*(35*a^3 + 84*a^2*b*x + 70*a*b^2*x^2 + 20*b^3*x^3))/(140*(a + b*x))

________________________________________________________________________________________

Maple [A]  time = 0.176, size = 52, normalized size = 0.3 \begin{align*}{\frac{{x}^{4} \left ( 20\,{b}^{3}{x}^{3}+70\,a{b}^{2}{x}^{2}+84\,{a}^{2}bx+35\,{a}^{3} \right ) }{140\, \left ( bx+a \right ) ^{3}} \left ( \left ( bx+a \right ) ^{2} \right ) ^{{\frac{3}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3*(b^2*x^2+2*a*b*x+a^2)^(3/2),x)

[Out]

1/140*x^4*(20*b^3*x^3+70*a*b^2*x^2+84*a^2*b*x+35*a^3)*((b*x+a)^2)^(3/2)/(b*x+a)^3

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(b^2*x^2+2*a*b*x+a^2)^(3/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 2.02851, size = 80, normalized size = 0.53 \begin{align*} \frac{1}{7} \, b^{3} x^{7} + \frac{1}{2} \, a b^{2} x^{6} + \frac{3}{5} \, a^{2} b x^{5} + \frac{1}{4} \, a^{3} x^{4} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(b^2*x^2+2*a*b*x+a^2)^(3/2),x, algorithm="fricas")

[Out]

1/7*b^3*x^7 + 1/2*a*b^2*x^6 + 3/5*a^2*b*x^5 + 1/4*a^3*x^4

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int x^{3} \left (\left (a + b x\right )^{2}\right )^{\frac{3}{2}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**3*(b**2*x**2+2*a*b*x+a**2)**(3/2),x)

[Out]

Integral(x**3*((a + b*x)**2)**(3/2), x)

________________________________________________________________________________________

Giac [A]  time = 1.25165, size = 99, normalized size = 0.66 \begin{align*} \frac{1}{7} \, b^{3} x^{7} \mathrm{sgn}\left (b x + a\right ) + \frac{1}{2} \, a b^{2} x^{6} \mathrm{sgn}\left (b x + a\right ) + \frac{3}{5} \, a^{2} b x^{5} \mathrm{sgn}\left (b x + a\right ) + \frac{1}{4} \, a^{3} x^{4} \mathrm{sgn}\left (b x + a\right ) - \frac{a^{7} \mathrm{sgn}\left (b x + a\right )}{140 \, b^{4}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(b^2*x^2+2*a*b*x+a^2)^(3/2),x, algorithm="giac")

[Out]

1/7*b^3*x^7*sgn(b*x + a) + 1/2*a*b^2*x^6*sgn(b*x + a) + 3/5*a^2*b*x^5*sgn(b*x + a) + 1/4*a^3*x^4*sgn(b*x + a)
- 1/140*a^7*sgn(b*x + a)/b^4